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The Sabine type formulas of decay rates are derived for diffuse sound fields. This restricts their use typically to 
300 Hz and above. Standing wave modes dominate the lower frequency range form of acoustic energy storage. 
Dissipation of this energy from the room occurs in two forms: transmission out of the room and absorption within 
the room.

Rooms used for acoustic work frequently have heavier than usual walls to increase isolation from exterior 
noise. This results in less opportunity for transmission type of energy loss from the room which increases its 
dependence on internal acoustic absorption to provide sufficient decay rates.

Absorption of acoustic energy is by means of friction effects applied to kinetic energy components of the sound 
waves. This friction is usually “wall friction,” where the reflecting wave is locally transformed by the stiff and heavy 
wall impedance. The surface normal component of the waves’ kinetic energy density converts to extra pressure 
and the tangential component is exposed to opportunities for surface frictional dissipation. 

There are three types of low frequency wave containment in a room: Longitudinal, tangential and oblique. The 
decay rates of these are not the same. The longitudinal modes are one dimensional, axial standing waves and 
present the lowest amount of kinetic energy density to the wall surfaces, hence they have the longest decay 
rates. The tangential modes impact two pairs of wall surfaces and the oblique impacts all three pairs of walls. The 
tangential and oblique modes produce about twice the decay rate as the longitudinal mode because their grazing 
impact on wall surfaces provides for more wall friction. Sabine type equations also account for this type of activity.

Bass traps are discrete devices as contrasted with a wall surface. Their performance depends on their placement 
relative to the energy distribution of the various modes of vibration. At a particular location, the trap may provide 
significant absorption at one frequency, and minimal absorption at another. Traps located in the tri corners of a 
room contact pressure fluctuations associated with each room resonance.

Corner loaded bass traps pull energy out of the standing wave with each pressure change that occurs. Low 
frequency presents pressure changes at a slower rate than would be by a higher frequency. Calculations of decay 
rates that are based on this understanding are derived by distributing the energy in the room into the number 
of pressure zones that exist for the particular mode, then dissipating a fraction of that energy each half cycle, 
depending on the number of traps located in these pressure zones.

This new method of calculation predicts the number and frequency response of the bass traps required to attain 
specified decay rate frequency response of a room. Calculation and measurements in test chambers are found to 
agree. For example, a 2000 ft3 chamber with each of its 8 tri corners loaded with an efficient bass trap produces 
an RT-60 of 0.3 seconds at 113 Hz.

The formula developed to handle this viewpoint decay rates includes a term which counts the number of fluctuating 
pressure zones in a room. Its appearance is very similar to the equation that predicts modal density. Another curious 
effect noticed with very efficient bass traps is the saturation effect of absorption. Decay rates are proportional to the 
amount of absorption in a corner, but they become less sensitive with higher absorption and reach a limit, indicating 
that a finite rate of energy can be withdrawn from a resonant field, i.e., no more than all the energy contained in the 
half wave length held by the corner can be extracted per half cycle, in spite of the “amount” of absorption available.



Room Acoustics and Low Frequency Damping

The quality, “Q,” of a resonant system identifies 
its response characteristic. High-Q systems are 
sharply resonant. They are easy to drive and have 
a strong response at the resonant frequency (Fo). 
Low-Q systems respond less strongly and over an 
extended frequency range. A flat response system 
has zero Q.

The frequency response curve of a speaker may be 
flat from 20-20,000 Hz in the test chamber, a room 
without reflections. Place the speaker in a real 
room with a microphone at the listening position. 
Measure again the response. A series of peaks and 
valleys are recorded. Move the speaker or mic and 
a different curve is developed. A room has many 
resonant frequencies. Which of them are stimulated 
is dependent on speaker placement. Each peak 
and null in the spectrum identifies a resonant 
condition.

Any physical resonance will have a pressure 
distribution in space. The microphone at a pressure 
peak will register a strong signal. Move the mic ¼ 
wavelength to a node and no signal is received. In 
either case resonance is evident.

Definitions of “Q”

The “Q” of a system can be measured from 
its frequency response curve. The ratio of the 
resonance center frequency to the bandwidth that 
accompanies the ½ power or 3 dB down point 
comprises one definition of the “Q” of a system. 
Usually room response curves are presented dB 
vs. log frequency format. Resonances occur at 
different center frequencies. If the “Q” is the same, 
the response curve shape is the same no matter 
which center frequency is chosen. The “Q” of an 
average room lies between 10 and 40. The “QP of 
a free piano string is 1000.

Resonant systems with slight resistance have High-
Q responses. Add energy dissipations (resistance) 
to lower the “Q”. Another definition of “Q” is 2pi 
times the ratio of the energy of the system to the 
energy lost per cycle.



Decay Relations

Ordinary resonances decay out following an 
exponential curve in time. The time constant (T) 
of the decay is the time required for the system to 
drop to 1/e of the original energy level.

The exponential decay equation can be used to 
develop the definition of “Q” for the system. If the 
exponent is a small fraction, less than 1/10, then a 
simple approximation arises. “Q” equals 2π times 
the resonant frequency times the decay constant.

The traditional presentation of decay 
measurements is the RT60; the time required for 
the energy to drop 60 dB. The exponential curve 
appears as a straight line in its dB vs. time plot.

By combining the dB level version of energy with 
the exponential version, the RT60 is resolved to be 
13.8 times the decay constant.

“Q” and Decay Constants

The resonance response Q can be expressed 
in the traditional measure of decay, RT60. It is 
developed by combining the lightly damped Q 
relations with the RT60 decay constant relationship.

The result of the previous analysis is the linear 
relationship between the resonant frequency of 
a listening room and its “Q” for a fixed RT60. For 
example, a room may well have an RT60 of 1 
second at a resonant frequency of 90 Hz. This 
means that the room has a “Q” of 50 for that 
resonance. A current spec for listening rooms is 
an RT60 of .5 seconds. If this applies to room 
resonance modes, their “Q” varies from 5 to 100 in 
the 20 to 400 Hz range.



Resonant Bandwidth Relations

The “Q” of the resonant mode is linear with 
frequency for a constant RT60. By referring to the 
half power bandwidth relationship, the bandwidth 
is definable in terms of RT60. For a constant RT60 
the bandwidth is constant.

The frequency response of a listening room can be 
taken with a linear frequency sweep. This will show 
the fixed bandwidth resonances to have the same 
shape regardless of center frequency.

If it is determined that the ”Q” of some mode needs 
to be reduced, the proper resistance needs to 
be added. The energy relations for “Q” yield the 
required (dQ) addition based on initial Qi and final 
Qf values.

Example

The bandwidth of the 100 Hz room resonance 
mode may be found to be 3 Hz giving an initial Qi 
of 33. The desirable bandwidth might be 5 Hz for a 
“Q” of 20. The correction required has a strength of 
50. It is developed by adding the proper amount of 
absorption to the resonant mode.

The initial RT60 of the room is .73 seconds. The 
additional absorption added is sufficient to establish 
alone in the room an RT60 of 1.1 seconds. The 
result of the total absorption produces an RT60 of 
.44 seconds.

In order to provide the correction (dQ), a fraction 
of total energy (F) must be removed from the 
resonant mode each cycle. The Sabine type 
equations do not apply here. They are based on 
absorptive surfaces exposed to diffuse sound fields 
and are valid above 300 Hz. Here is low frequency 
absorption and it is related to the volume and 
position of the absorption relative to that of the 
standing wave.



Resonant Decay by Discrete Absorption

A basic view of energy absorption allows a fraction 
(F) of the energy remaining in a system to be 
removed at a regular rate (1/N times a second). 
This leads to the exponential decay relations whose 
“RT60” expression is well known. If the  fraction is 
less than 20%, the system is “lightly damped,” and 
the log term can be simplified in approximation.

The decay equation is very general. It remains only 
to define the rate and fraction of energy absorption 
for any particular system and the RT60 can be 
predicted.

One Dimension Resonance Decay

The “Impedance Tube” provides a device in which 
standing waves can be generated and then their 
decay monitored. The absorption device is located 
at one end of a tube while the sound source is at 
the other.

Work is done at the absorption each time there is 
excess pressure. This occurs twice each cycle, 
once when the pressure goes positive, and then 
again when it goes negative. The rate of absorption 
is twice the resonant frequency.

The fraction of energy lost by each absorption 
depends on the position and number of traps in 
the resonant field. A trap located at one end of the 
impedance tube (A) experiences pressure pulses 
and can absorb energy. The same trap located at a 
pressure node (B) experiences no pressure change 
and does no work.

The single trap at the end of the tube has access to 
one-half the total energy in the tube. There are two 
pressure zones, ¼ wavelength in size for the first 
harmonic.



The second harmonic has its energy split amongst 
four ¼ wavelength zones. The trap has access 
to only ¼ the total energy stored in the resonant 
condition.

The third harmonic has six discrete pressure 
zones. The trap only works 1/6 of the total energy 
in the field. The relative size of the trap to the zone 
increases with higher mode (j) numbers, so its 
efficiency increases.

Multiple traps in a resonant field increase the 
fraction of energy removed each pressure pulse. 
Two properly placed traps in the third mode or 
harmonic has access to 2/6 or 1/3 of the system’s 
energy.

The total number of ¼ wavelength pressure zones 
is twice the mode number. The fraction of energy 
lost per pressure pulse is the ratio of trapped zones 
(J) to the total number of zones (21) times an 
efficiency term.

The RT60 equation can be written for one 
dimension trapping. For small absorption, the 
approximation is made.

The simple Sabine decay formula for one 
dimension is a classic derivation. A pulse is injected 
into the impedance tube. Absorption is located 
at the tube end. The fraction of energy lost upon 
impact is the absorption coefficient (a).

The PZT decay formula can be converted into a 
form like the Sabine. Any frequency of resonance 
belongs to one of a harmonic series. It is the 
multiple of the mode number (L) and fundamental 
frequency (fo). Since absorption is only at one end 
of the tube for both cases, only one pressure zone 
is trapped.

The efficiency term (n) in PZT analysis and the 
absorption coefficient (a) in Sabine calculations 
have the same physical definition. It is the ratio of 
energy lost to initial energy. For the one dimension 
systems, PZT rationale results in the same 
conclusion as does the classic Sabine analysis.



Two Dimensional Decay Rates

The two dimensional physical space is outlined 
by an X and Y dimension. Each resonant mode is 
identified by a “mode number,” a set of two whole 
numbers (L,M). If one of the mode numbers is zero, 
the one dimensional model develops.

The standard equation for the frequency of a 
resonant mode has two components. They can 
be converted into wave numbers by dividing each 
mode number by its associated physical length. 
The mode frequency equation can be rewritten in 
terms of wave numbers.

The primitive cell in two dimensions is the (1,1) 
mode. Positive pressure in opposite corners with 
negative pressure in the other two marks the 
energy distribution at one moment. A half cycle 
later the polarity reverses. Between these moments 
are complimentary patterns of kinetic energy 
distribution.

There are a total of 4 quarter wavelength zones in 
the pressure distribution of the primitive cell. They 
are in the corners. All the energy in the resonant 
cell is found within these four zones twice each 
cycle. 80% of a zone is found contained within the 
radius, 1/6 of the wavelength from the corner.

Higher mode numbers are simply more such cells 
packed into the same space. A (2,1) mode has 
two cells in the X axis and one cell in the Y. A (2,2) 
mode is two cells wide by two cells high. The total 
number of cells is the product of the two mode 
numbers.

The total number of pressure zones (K) will be 
four times the number of cells in a mode. If some 
number (J) of them are absorptively trapped, the 
fraction of pressure zones trapped is known if the 
efficiency term is included.

The RT60 formula derived for PZT methods is 
general and can be applied to this two dimensional 
case. For light absorption, a further simplification 
results.



Three Dimensional Modes

The three dimensional model of Pressure Zone 
Trapping also has a primitive cell, (1,1,1). It has 
eight corners, each containing a quarter wavelength 
pressure zone. If all eight zones were placed 
together a complete sphere would be formed.

Harmonics of the fundamental are built in terms 
of complete cells. The (1,1,2) will be one cell high, 
one cell wide, and two cells deep. It will have 8 x 2 
or 16 pressure zones. The (1,1,3) mode is one by 
one by three cells in configuration and has 8 x 3 or 
24 pressure zones. The (2,2,2) mode is accordingly 
two by two by two cells for a total of eight and 8 x 8 
or 64 pressure zones. The total number of pressure 
zones for any (L,M,N) mode is 8(LMN). They 
momentarily hold all the energy of the resonant 
field two times per cycle for any standing wave 
mode in a three dimensional field.

The basic Pressure Zone Trapping formula still 
applies. The more complicated term for frequency, 
well known and dependent on three terms, can be 
substituted. The value for absorption coefficient 
remains the fraction of energy absorbed per 
absorption event. It is the fraction of trapped zones 
times the efficiency term.

The formal RT60 equation can be simplified if 
the absorption coefficient is less than 1/5 by 
approximation. The complete RT60 equation is 
written by substituting terms for frequency and 
fraction of energy. This formal equation can be 
simplified if the absorption coefficient (F) is less 
than 1/5 in the log term.

The RT60 equation can be further developed. The 
room volume (Vr) term is introduced which converts 
the three mode numbers into wave numbers.



Wave Number Space

Wave number space is a three dimensional 
coordinate system with A, B, and C axes. Each 
point (P) in this space defines a resonant mode for 
the room. This is not a continuous field space. It 
is more like a crystal; discrete points set apart at 
specific distances.

The mode point is at the tip of the resultant vector 
(D) whose magnitude is the sum of the squares 
of the components. It is also at the far corner of 
a rectangle whose volume (V) is known by the 
products of its components.

The frequency and RT60 formulas can be rewritten 
in terms of this wave number space geometry.

This listening room already has a decay time. 
Frequently improvement in the decay rate is 
desired. The minimum upgrade is to trap one 
zone for each 500 cubic feet of room volume. 
The resulting RT60 is a simple expression but is 
only valid for an absolutely rigid room whose only 
absorption is due to the trapped zones.

Example

Consider a room 18 by 24 by 8 feet high. We can 
look at mode (2,2,1). The wave numbers (1/9, 1/12, 
1/8) are easily calculated along with the volume 
and diagonal wave number in space. The decay 
time for that mode is 0.3 sec. This assumes one 
100% efficient absorption device per 500 cubic feet 
of room volume.



How Many Traps

The efficiency term (n) is defined as the ratio of 
energy absorbed to the energy presented. The 
¼ wavelength pressure zone contains a discrete 
quantity of energy in a definable volume. The 
trap occupies part of that quadrant with its own 
volume (V). 80% of the zone’s energy lies within 
1/6 wavelength radius from the corner. The ratio 
of PZT volume to the 1/8 spherical section volume 
comprises the geometric efficiency (E). This is 
further reduced by the mechanical efficiency of the 
trap (a) itself; typically 50%.

The RT60 equation can be fitted with this efficiency 
term. Additional substitutions and reductions 
provide the RT60 to have an inverse frequency 
dependency. Recall the Sabine equations to not be 
directly frequency dependent. There appears the 
dimensionless ratio in wave number space of the 
modal volume to the cubed modal length. This ratio 
is largest for symmetric modes (1, 1, 7) or (2, 2, 2) 
and smallest for the eccentric modes as (1, 2, 6). It 
is always less than unity and a mean value of 1/3 is 
chosen.

The use of traps sufficient to remedy a room’s poor 
low end ranges from one trap per 500 cubic feet 
to one trap per 250 cubic feet of room volume. 
This simplifies further the RT60 equation. The 
trap volume can be resolved for the 500 cubic foot 
ratio to be inversely dependent on both RT60 and 
frequency.

The typical acoustic efficiency is 50% for these 
three commercial traps. Their volume levels cross 
extended through the frequency range call out the 
RT60 vs. frequency plot for the 250 cubic foot or 
500 cubic foot rate. For example, a 4 cubic foot trap 
provides 2 seconds at 20 Hz, 1 second at 50 Hz 
and ½ second at 90 Hz RT60 times.

Conversely, for a particular resonant frequency, 
room volume and required RT60, the number (J) of 
trapped volumes can be calculated.



Example

A room of 2,000 cubic feet needs an RT60 of 1/2 
second at 50 Hz and tubes having a volume of 
4 cubic feet each will be used. A total of 7 traps 
must be placed in the pressure zones of that mode 
resonance.

By utilizing PZT methods, an absorptive treatment 
for low frequency resonance can be specified. The 
(dQ) change in room Q is easily approximated. 
The volume (Vt) of traps required to produce that 
change can also be defined.

Example

The 2,000 cubic foot room needed a Q adjustment 
of 50. The volume of PZT adjustment is 12 cubic 
feet.

The listening room is the last link in the audio chain. 
It is an acoustic coupler loaded with resonances. 
Hundreds of rooms have been developed into 
satisfactory listening environments by using the 500 
cubic feet per trap rule. The average trap volume 
is 2.5 cubic feet. A correction in Quality of 60 is 
what the average acoustic treatment produces. 
Serious listening rooms usually require a correction 
in Quality of 30. This means the average (Q=40) 
listening room must have its Q cut in half and 
a serious room must have a Q equal to 1/3 its 
untreated Q.

A frequently asked question involves the number 
of traps required to reduce an existing RT60. PZT 
allows the answer without resorting to Sabine 
formulas.



Examples

A 2000 cubic foot room has an RT60 of 1.3 sec. 
at 50 Hz. We wish to reduce it to 0.7 sec. using 4 
cubic foot traps. Calculations show 4.4 traps will 
lower the RT60 as required.

A 2000 cubic foot soft room with an RT60 of 0.5 
seconds needs to be reduced to 0.3 seconds. 
Using 4 cubic foot traps, calculations show 9 are 
needed.

If RT60 equipment is not available, a slow sine 
sweep frequency response will suffice. Measure 
the 3 dB down bandwidth dF. Substitute its relation 
for initial RT60. The desired RT60 is often specified 
and doesn’t need conversion to final bandwidth.

Reverb Chamber

Absorption is usually measured in reverb chambers 
using RT60 values and the Sabine absorption 
formula. PZT equations can be rearranged into the 
same format. The distinctive frequency dependence 
of PZT absorption is clear. This relation connects 
standard Sabine lab methods to PZT theory.

Conclusion

A listening room does not have an acoustically flat 
response. Most rooms can play better when their 
Q is reduced by a factor of 2 or 3. Room color is 
damped out from the listening ambience. It is the 
Q not the EQ that distinguishes the listening room 
from a standard room. Pink noise is an appropriate 
test signal for EQ settings. Pure tone, not 1/3 
octave sweeps or RT60 are required to monitor the 
room Q.

The Pressure Zone Trap (PZT) approach provides 
a rational view of discrete absorptive devices in the 
resonant field. It allows specifications to reduce the 
RT60, or Q of the room to acceptable levels.


